时间 费用 贷款 车辆 公司 银行 万元 企业 自己的 材料

当前位置: 首页 > 常识 >

广义积分大全(考研数学高数核心知识点汇总)

100次浏览     发布时间:2024-08-15 09:32:44    

中值定理

1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)

2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)

3、积分中值定理

4、泰勒中值定理

5、费马引理

一元函数积分学

1、原函数与不定积分的定义

2、不定积分的计算(变量代换、分部积分)

3、定积分的定义(几何意义、微元法思想(数一、二))

4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)

5、定积分的计算

6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)

7、变限积分(求导)

8、广义积分(收敛性的判断、计算)

多元函数微分学

1、二重极 限和二元函数连续、偏导数、可微及全微分的定义

2、二元函数偏导数存在、可微、偏导函数连续之间的关系

3、多元函数偏导数的计算(重点)

4、方向导数与梯度

5、多元函数的极值(无条件极值和条件极值)

6、空间曲线的切线与法平面、曲面的切平面与法线

微分方程

1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解

2、线性微分方程解的性质(叠加原理、解的结构)

3、应用(由几何及物理背景列方程)

级数

1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)

2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)

3、交错级数的莱布尼兹判别法

4、绝对收敛与条件收敛

5、幂级数的收敛半径与收敛域

6、幂级数的求和与展开

7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理

相关文章